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Abstract

The present work focuses on the application of two near-wall, wall-normal free, second-moment closure (SMC) models in the RANS
(Reynolds-Averaged Navier–Stokes) framework in computing the (compressible) transonic flow past aircraft configurations and their ele-
ments (airfoils and wings). The flow geometries considered in this work include the transonic RAE 2822 profiles (cases 9 and 10), the
ONERA M6 wing and the DLR-ALVAST wing-body configuration. The model results are analysed and discussed in conjunction with
an available experimental database and the results of two widely used eddy-viscosity-based models, the one-equation Spalart–Allmaras
model [Spalart, P.R., Allmaras, S.R., 1994. A one-equation turbulence model for aerodynamic flows. La Recherche Aérospatiale 1, 5–21]
and the two-equation k–x model of Wilcox [Wilcox, D.C., 1988. Reassessment of the scale-determining equation for advanced turbu-
lence models. AIAA Journal 26, 1299–1310]. The SMC predictions show encouraging results with respect to the shock position, shock-
affected flow structure and the strength of the wing-tip vortex.
� 2007 Elsevier Inc. All rights reserved.
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1 Some inviscid computational methods based on solving the potential
flow equations such as panel methods and methods computing the
flowfield by solving the Euler equations accounting eventually for the
viscous effects by interacting with a boundary-layer method are regarded
1. Introduction

Computational Fluid Dynamics (CFD) is nowadays
regarded as an indispensable tool in aerodynamic design
and optimization. The application of efficient CFD meth-
ods in aircraft aerodynamics and related disciplines enables
reduction of costs and shortens substantially the time for
development in aircraft industry. Furthermore, the
employment of CFD methods supports to a large extent
a detailed evaluation of new technologies and concepts as
well as alternative configurations with respect to security,
environmental (e.g., noise pollution) and economic aspects
of transport and passenger aircrafts.

The turbulent, aerodynamic type flows with relevance to
aircraft aerodynamics have been calculated in the past
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using almost exclusively simple, zero-equation turbulence
models based on Prandtl’s mixing length theory, such as
Baldwin and Lomax (1978), Cebeci–Smith (1974) and
Johnson–King (1985) models in the framework of the com-
putational methods which solve the Navier–Stokes-type
flow equations.1 The latter model, known also as a half-
equation model, solves in addition the ordinary differential
equation governing the square root of the maximum shear
stress component. While these turbulence models have
been designed especially for the wing aerodynamics,
as the most practical methods for engineering use. However, they are –
although some appropriate extensions are proposed – to a large extent
limited to the attached flows. The readers interested in more details about
these methods are encouraged to consult the work of Cebeci (1999).

mailto:s.jakirlic@sla.tu-darmstadt.de


Fig. 1. Mach-number contours in the transonic flow around RAE2822
profile.

2 The transonic flow past aircraft wings can also exhibit unsteady shock/
boundary-layer interaction caused by the shock position change due to
self-excited oscillations. Readers interested in these, so-called transonic
buffet flows are referred to the work of Barakos and Drikakis (2000).

S. Jakirlić et al. / Int. J. Heat and Fluid Flow 28 (2007) 602–615 603
increasing computer capacities, developments in grid gen-
eration and improved efficiency of numerical algorithms
enable broader application of models based on the trans-
port equations for turbulent quantities. Such model
schemes include one-equation models, solving the equation
governing the turbulent viscosity, e.g. Spalart–Allmaras
model (SA, 1994), two-equation models based, for example
on the scale-supplying variable x denoting the inverse time
scale of turbulence (Wilcox, 1988; Menter, 1994), or Rey-
nolds-stress transport closures. The final report of the joint
European project ECARP (European Computational
Aerodynamic Research Project) on the validation of the
CFD codes and assessment of turbulence models (Haase
et al., 1997) offers a detailed insight into predictive capabil-
ities of a broad range of turbulent models, especially trans-
port models, in a large number of aerodynamic
applications accounting for flow three-dimensionality,
transonic configurations featuring shock-induced effects,
separation, unsteady wakes, etc. Hereby, the contribution
of Leschziner and Lien (1997) with respect to the use of full
second-moment closure and non-linear eddy-viscosity
transport models should be noted. Indeed, this project
has been instrumental in introducing transport models into
aerodynamic simulations for aircraft design in the indus-
trial environment. Several other projects followed, for
example the project MEGAFLOW within the framework
of the German aerospace research program (Kroll et al.,
2000) dealing with development and validation of efficient
numerical tools for the aerodynamic calculation of com-
plete aircraft in cruise, take-off and landing configurations.
The recently completed FLOMANIA project – A Euro-
pean Initiative on Flow Physics Modelling – was almost
entirely devoted to employment of sophisticated, mostly
full (differential) Reynolds-stress models, Haase et al.
(2006). The project is concluded with an application-ori-
ented synthesis about the model’s predictive performance
on the basis of computing different aerodynamic flow
configurations. A comprehensive survey article about the
turbulence model assessment in aeronautics along with
related numerical issues is given in the work of Leschziner
and Drikakis (2002).

Together with the high-lift configurations corresponding
to take-off and landing, the high-speed, cruise-flight config-
urations play an important role in the entire operational
range of an aircraft. Transport and passenger aircrafts
operate at cruise-flight velocities corresponding to a Mach
number interval Ma = 0.75–0.85. The associated flow
regime past an aircraft wing is of transonic nature. It is
characterized by the development of a closed, wall-
bounded supersonic flow region at the upper wing surface,
Fig. 1 (its appearance on the lower wing surface is also pos-
sible depending on its curvature and the angle of attack).
The flow is strongly accelerated, reaching sonic velocities
at the leading edge of the wing. The supersonic region
spreads behind the so-called sound line, denoting the iso-
line with Ma = 1.0. The pressure increase behind the max-
imum profile thickness causes the formation of a shock
wave which closes the supersonic region. The shock front
proceeds almost orthogonally to the wing profile contour.
Transonic flows also exhibit boundary-layer/shock interac-
tion, i.e. a boundary-layer thickening due to the adverse
pressure gradient, and in some cases shock-induced separa-
tion occurs.2 The change of the flow regime – from sub-
sonic regime to supersonic and back – implies the solving
of a combined elliptic/hyperbolic flow problem. These fea-
tures as well as the compressible properties of the flow in
general pose a special challenge not only for the numerical
treatment but also for turbulence models. The present
work focuses on the application of two near-wall second-
moment closure (SMC) models, one accounting separately
for both viscous effects and kinematic wall blockage with
respect to the anisotropic nature of the Reynolds-stress
and stress dissipation fields (Jakirlić and Hanjalić, 1995;
Hanjalic and Jakirlic, 1998) and a second model, being a
default Reynolds-stress transport model in the compress-
ible flow solver DLR-FLOWer (Eisfeld et al., 2006).

Very extensive work on the computation of different
shock-affected flow configurations, including also the
RAE2822 airfoil, has been performed by Leschziner et al.
(2000) and Batten et al. (1999). They applied several linear
and non-linear, near-wall eddy-viscosity models and sec-
ond-moment closure models, among others also the Jakir-
lić and Hanjalić (1995) model, whose updated version (see
Section 2 for more details) is applied in the present work.
The performance of the original linear HJ model was eval-
uated by computing the transonic flows over a plane chan-
nel bump (internal flow) and over an axisymmetric bump
(both configurations are characterized by a strong pressure
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increase in the supersonic portion of the flow, which is
additionally enhanced by a much stronger cross-section
constriction compared to the cases considered in the pres-
ent work). These results were inferior to those obtained
using the non-linear MCL (Modified Craft-Launder)
model, especially with respect to the low intensity of the
shock-induced flow reversal and pressure recovery. Batten
et al. (1999) blamed the linear model of the redistribution
term and conventional wall-reflection term due to Gibson
and Launder (1978) used in the HJ model, the latter return-
ing an excessive turbulence intensity in flows affected by
strong deceleration (e.g. stagnation flow regions).
Fig. 2. Semi-log plots of the mean axial velocity in the boundary-layers
subjected to different pressure gradients.
2. Computational method

The continuity, momentum and energy equations gov-
erning the compressible flow are given in differential form
in the Reynolds-Averaged Navier–Stokes framework as
follows:
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is assumed. In these material laws the dynamic viscosity
follows from Sutherland’s formula and the heat conductiv-
ity is related to the dynamic viscosity via a constant Prandtl
number. Thermodynamic closure is achieved by the
assumption of an ideal ðP ¼ qReT Þ, calorically perfect
gas. Note, that the contribution of turbulent diffusion
�qDkkð¼ oðqu00i u00i u00k=2� u00i sikÞb=oxkÞ to the total energy Eq.
(3) and the contributions of the kinetic energy of turbu-
lence to the total energy eE and total enthalpy eH are usually
neglected. This simplification was followed also in the pres-
ent work.

The turbulent heat flux is modelled in analogy to Fou-
rier type heat conduction

�qðtÞi ð¼ qhu00kÞ ¼ ��kðtÞ
oeT
oxi

; ð5:1Þ
where the eddy conductivity is computed from an equiva-
lent eddy-viscosity via the definition of the turbulent Pra-
ndtl number, i.e.

�kðtÞ ¼ Cp�lðtÞ

Prt
ð5:2Þ

with �lðtÞ determined by an eddy-viscosity model scheme.
The following sections outline the description of the turbu-
lence models used and numerical method applied.
2.1. Turbulence modelling

The computations were performed with a wall-normal
free version of the low-Re number Second-Moment (Rey-
nolds-stress) closure model (RSM) due to Hanjalic and
Jakirlic (HJ, 1998). The model satisfies all important
requirements, with a specific emphasis on limiting states
of turbulence (vanishing and very high turbulence Re

numbers, two-component limit, etc.), reproducing the
laminar-to-turbulent and reverse transition (by-pass and
shear-generated transition with minimum background tur-
bulence), appropriate reproduction of effects of extra strain
rates (transverse shear, skew-induced three-dimensional-
ity), high acceleration (including laminarization), high
deceleration (approaching separation), swirl effects, mean
compression, flow separation, recirculation and reattach-
ment, see e.g. Hanjalić and Jakirlić (2002). The best illus-
tration for the model’s ability to account properly for a
large deviation from the equilibrium conditions is given
in Fig. 2, where semi-log plots of the mean velocity are pre-
sented for several boundary layer flows subjected to differ-
ent pressure gradients (favourable and adverse) featuring
the flow phenomena pertinent to aircraft aerodynamics.

Another interesting model feature accounts separately
for the wall effects on anisotropy of stress bearing and dis-
sipative scales by introducing both the turbulent stress and
dissipation rate anisotropy (A and E; A = 1–9(A2 � A3)/8,
A2 = aijaji, A3 = aijajkaki; E = 1–9(E2 � E3)/8, E2 = eijeji,
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E3 = eijejkeki), in addition to viscosity effects taken into
account via Ret ¼ ~k2=ðmeÞ. The strong difference in the
anisotropy rates of both tensors ðaij ¼ gu00i u00j =
~k � 2dij=3 and eij ¼ eij=e� 2dij=3Þ expressed in terms of
their two-componentality factors A and E and the turbu-
lence model capability to capture them correctly is shown
in Fig. 3. Fig. 3 displays also the normal Reynolds-stress
intensities across the zero-pressure gradient boundary-layer
at the location corresponding to Reh = 1410. It should be
noted that this result is obtained by starting from the lam-
inar flow in front of the flat plate and prescribing the loca-
tion where an abrupt transition occurs (the source terms in
the Reynolds-stress equation – production, redistribution
and dissipation – are multiplied by a step-function taking
zero value in the laminar region and unity value in the tur-
bulent region). Even better agreement, especially concern-
ing the streamwise stress component, is obtained when
starting from turbulent input profiles (not shown here).

The precise specification of the entire turbulence model
is given below. The present near-wall, second-moment clo-
sure model is based on the model equations governing the
Reynolds-stress tensor and the dissipation rate of the
kinetic energy of turbulence:
Fig. 3. Reynolds-stress components (upper) and two-componentality
parameters A and E (lower) in a zero-pressure gradient boundary-layer.
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with stress production term P ij ¼ �guiuk o eU j=oxk�gujuk o eU i=oxk and P k ¼ �guiujo eU i=oxj being the production
rate of the kinetic energy of turbulence. The coefficients
CS and Ce take the values 0.22 and 0.18, respectively.
The stress dissipation tensor was modelled by using the fol-
lowing anisotropic formulation
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with fs ¼ 1�
ffiffiffi
A
p

E2 (one should note that this formulation
doesn’t result in the correct asymptotic behaviour of the e
22, e12 and e23 components, but this fact caused only a slight
near-wall imbalance in the equations governing the stress
components comprising the normal-to-the-wall fluctuation
and has marginal effect on other components) and a qua-
dratic formulation of the pressure–strain model
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with mean vorticity tensor eW ij ¼ 0:5ðo eU i=oxj � o eU j=oxiÞ.
The wall reflexion term model

Uw
ij ¼ Cw

1 fw
e
~k

gu00k u00mnknmdij �
3

2
gu00i u00k nknj �

3

2
gu00k u00j nkni

� �
þ Cw

2 fw
e
~k

UIP
km;2nknmdij �

3

2
UIP

ik;2nknj �
3

2
UIP

kj;2nkni

� �
;

ð10Þ

UIP
ij;2 ¼ �C2 P ij �

2

3
P kdij

� �
ð11Þ

was made wall-normal free by introducing a unit vector
pointing into the direction of the non-homogeneity of the
turbulence field, in line with the proposal of Gerolymos
and Vallet (2002): ni ¼ rðA~k3=2=eÞ=jrðA~k3=2=eÞj. As indi-
cated in Eq. (10), the linear, isotropization-of-production
(IP, Launder et al., 1975) form of the rapid pressure–strain
model (Eq. (11), with C2 defined in Eq. (12)) was retained



Table 1
Closure coefficients for the LRR and SSG contributions to the SSG/LRR-
x pressure redistribution model (Eq. (9))

C1 C01 C02 C3 C4 C5

LRR 1.8 0.0 0.0 0.8 ð18CLRR
2

þ12Þ=22
ð�14CLRR

2

þ20Þ=22
SSG 1.7 1.05 0.9 0.8–0.65

ffiffiffiffiffi
A2

p
0.625 0.2
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in the term denoting the wall influence on the rapid pres-
sure scrambling process.

The model coefficients and functions are summarized as
follows:

C1 ¼ C þ
ffiffiffi
A
p

E2; C ¼ 2:5AF 1=4f ;
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with yn representing the wall closest distance. The func-
tional dependency of the coefficient C01 in the non-linear
part of the slow term is obtained by a method for an
a priori determination of the model coefficients, Jakirlić
(2004). The C02 profiles obtained from the DNS database
of the plane channel flow for Res = 180 (Moser et al.,
1999) using the same method3 exhibit values between
�0.2 and 0.2, missing by far the positive value in, e.g.,
the Speziale, Speziale et al. (1991) – SSG model (C02 ¼
0:9, Table 1), whereas the evaluated profiles of the coeffi-
cients C4 and C5 exhibit the values agreeing well with the
SSG proposal. The appropriate value and even the sign
of the coefficient C02 remain to be clarified. Because of this
uncertainty its value was set to zero in the present work, i.e.
the linear model for the rapid part was applied (Eqs. (12)–
(14)).

The wall boundary condition is based on the asymptotic
behaviour of the Taylor microscale kðk ¼

ffiffiffi
5
p

y þ � � �,
Fig. 4) and its exact relationship to the dissipation rate in
the immediate wall vicinity: e ¼ 10m~k=k2 (see Fig. 4 for
comparison of the dissipation rate obtained by this formu-
lation and the DNS database in all characteristics region of
a backward-facing step flow). Its linear dependency on the
wall distance through the entire viscous sublayer (even up
to y/H � 0.04 – H being the step height – corresponding
to y+ � 10 at x/H = 19, Fig. 4) enables the wall-closest grid
node to be positioned immediately below the edge of the
viscous sublayer, leading to a substantial coarsening of
the near-wall grid resolution. The profiles of all quantities
3 For each combination of three different components (e.g., ij = 11,
ij = 22 and ij = 12; other combinations can also be used) of the rapid term,
the model formulation for Uij,2 (Eq. (9)) can be written as a system of three
equations with three unknowns C02, C4 and C5 (C3 coefficient has been
taken as known, e.g., C3 ¼ 0:8� 0:65

ffiffiffiffiffi
A2

p
in the SSG model, Table 1). The

input data for all variables (also for Uij,2) were taken from the DNS
database of a fully-developed channel flow.

Fig. 4. Near-wall behaviour of Taylor microscale k (upper) and dissipa-
tion rate profiles at selected locations in the backward-facing step
flow (middle) (x/H = 4 and 6 – recirculation zone, x/H = 10, 15 and
19 – recovery region) and semi-log profile of the mean axial velocity at
x/H = 10 (lower). DNS (Le et al., 1997).
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in the remainder of the cross-section follow closely the
result obtained on the finest grid, as it is demonstrated
on the semi-log profile of the mean axial velocity, Fig. 4.
This approach provides bridging of a portion of the viscous
sublayer, higher grid flexibility with respect to flow regions
featured by different phenomena and weaker sensitivity
against the grid non-uniformities in the near-wall regions.

The second near-wall, Reynolds-stress transport model
used in the present work (denoted as SSG/LRR-x
throughout the manuscript) represents a default second-
moment closure model in the compressible computer code
DLR-FLOWer. This model scheme, proposed by Eisfeld
et al. (2006), represents a numerically robust combination
of the Launder–Reece–Rodi (LRR, 1975) model resolving
the near-wall layer with the Speziale–Sarkar–Gatski (Spezi-
ale et al., 1991) model (with linear formulation of the slow
part) being employed in the outer region. The coefficients
in this hybrid model are weighted between the values used
in the basic models by applying Menter’s blending function
F1 (Menter, 1994). Menter’s baseline x-equation ðx ¼
e=ðCl

~kÞ;Cl ¼ 0:09Þ is exploited for supplying the length
scale. It should be noted, that the coefficients in the LRR
model arose from its x-based, near-wall adaptation pro-
posed by Wilcox (1998). Hereby, the wall-reflection term
was omitted.

All coefficients featured in the model of the redistribu-
tion term (Eq. (9)) are obtained from the following blend-
ing relationship:

Ci ¼ F 1CLRR
i þ ð1� F 1ÞCSSG

i : ð15Þ
The respective coefficients of the SSG and LRR model
fractions are listed in Table 1 with CLRR

2 ¼ 0:5556. The
resulting value of the new coefficient in the model of turbu-
lent diffusion (Eq. (6)) was obtained using the same blend-
ing procedure: C0S ¼ F 1r� þ ð1� F 1ÞCS with r* = 0.5. The
Rotta’s isotropic model was adopted for the dissipation
correlation: eij = 2edij/3 (i.e. eij ¼ 2Cl

~kxdij=3Þ.
The model equation governing the specific time scale x

was formulated in line with the proposition due to Menter
(1994):
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Table 2
Closure coefficients for the LRR and SSG contributions to the x-equation
(Eq. (16)) in the SSG/LRR-x model

ax bx rx rd

LRR 0.5556 0.075 0.5 0
SSG 0.44 0.0828 0.856 2rSSG

x

The final values of the model coefficients (see Table 2 for
the individual coefficient values) were obtained by using
the blending procedure formulated in Eq. (15). The blend-
ing function F1 is defined after Menter, 1994) as

F 1 ¼ tanhð14Þ ð17Þ

with the argument f taking the following form:
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where d (Eq. (18)) denotes the wall distance. Because of the
constant values of the model coefficients in the pressure
redistribution model (Eqs. (9) and (15), Table 1), its slow
part does not vanish at the wall for all components. It
means that the two-componentality parameter A does not
approach the zero value at the wall, reflecting the model’s
non-capability to fully resolve the stress anisotropy in the
thin, immediate wall vicinity. Beyond this region, charac-
terized by a strong peak of the streamwise stress compo-
nent, the Reynolds-stress intensities display good
agreement with the DNS results, Fig. 3 (upper). Despite
this deviation the model is capable of correctly capturing
the pressure redistribution in flows affected by shock/
boundary-layer interaction and related phenomena, as it
will be illustrated in Section 3.

In addition, all cases considered were computed by two
popular eddy-viscosity-based models being extensively
used for the aerodynamics applications: the Spalart–Allm-
aras eddy-viscosity transport model (1994) and the Wil-
cox’s (1988) k–x model.
2.2. Numerical method

All computations were performed by using the DLR
FLOWer code, which is well established in the academic
research and aeronautical industry. It employs a variety
of turbulence models, ranging from eddy-viscosity models
(Baldwin–Lomax, Spalart–Allmaras type, k–x type) to full
Reynolds-stress models (Wilcox stress-x, SSG/LRR-x),
which have been validated in a large number of test cases,
ranging from baseline to complete aircraft flow configura-
tions, Kroll et al. (2002), Eisfeld et al. (2006), Eisfeld and
Brodersen (2005). The DLR FLOWer code is a Finite Vol-
ume method for block-structured meshes, solving the
afore-mentioned compressible RANS equations with any
of the above turbulence models. For the RANS equations
different spatial discretization schemes are available, where
the most common one is a second-order central scheme
with artificial dissipation.

The DLR-FLOWer code is density-based, solving the
coupled system of conservation equations for mass,
momentum, total energy and turbulent quantities in their
time-dependent, integral formulation
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where o~W =ot represents the time-derivative of the vector of
conservation variables, F c and F v are the tensors of convec-
tive and viscous fluxes, respectively, and ~Q contains the
source terms.

The FLOWer code uses a cell-centered Finite Volume
discretization (Kroll et al., 1995), i.e. the above equation
is solved for each individual mesh cell i according to

o~W i

ot
¼ � 1

V i

X
j

F c � F v

� �j
�~Sj � ~Q

" #
i

;

where Vi is the volume of the cell and ~Sj its j surface vec-
tors, which are assumed constant on each face.

Let the index i + 1/2 denote the face between cells i and
i + 1. Then, using a central space discretization, the con-
vective fluxes over a face are taken as the arithmetic aver-
age of the corresponding flux functions in the adjacent
cells, i.e.

ðF cÞiþ1=2 ¼ F cð~W iþ1=2Þ;
where

~W iþ1=2 ¼ 1

2
ð~W i þ ~W iþ1Þ:

However, such a central scheme is unstable and requires an
artificial dissipation term, so that the above equation has to
be modified to

o~W i

ot
¼� 1

V i

X
j

ðF cÞj �~Sj� rj~Dj
h i

�
X

j

ðF vÞj �~Sj
h i

�Q

( )
i

;

where the corresponding artificial dissipation flux is given
according to Jameson et al. (1981) by

~Diþ1=2 ¼ aiþ1=2 ðeð2ÞÞiþ1=2ð~W iþ1 � ~W iÞ
h

�ðeð4ÞÞiþ1=2ð~W iþ2 � 3~W iþ1 þ 3~W i � ~W i�1Þ
i

and its sign is defined by

riþ1=2 ¼ �ri�1=2 ¼ 1:

The coefficients

ðeð2ÞÞiþ1=2 ¼ kð2Þmaxðtiþ2; tiþ1; ti; ti�1Þ;
ðeð4ÞÞiþ1=2 ¼ max½0; kð4Þ � ðeð2ÞÞiþ1=2�

with the indicator for pressure gradients

t ¼ jpiþ1 � 2pi þ pi�1j
jpiþ1 þ 2pi þ pi�1j

;

where p is the pressure, are constructed in such a way, that
the scheme is automatically switching to first-order accu-
racy at shocks. This avoids oscillations of the solution.
The coefficients k(2) and k(4) define the level of artificial dis-
sipation close to the shock and in the regions, where the
solution is smooth, respectively. Typical values are
k(2) = 1/2 and k(4) = 1/64.

The coefficient ai+1/2 = ki+1/2/i+1/2 represents a specifi-
cally weighted spectral radius, in order to account for
highly stretched cells in boundary-layers. The idea is, that
each curvilinear coordinate n,g,f is associated with its
own spectral radius, e.g. kn ¼ j~U �~Snj þ aj~Snj, where ~U is
the local velocity vector, a is the local speed of sound,
and ~Sn is the locally averaged surface normal along n.
The weighting function is then defined according to Rade-
spiel et al. (1990) as

/n ¼ 1þmax
kg

kn

� �x

;
kf

kn

� �x� �
;

where the exponent x controls the weighting. Note, that
this scheme is applied only to the RANS equations,
whereas the convective fluxes in the turbulence equations
are discretized by a simpler first order upwind scheme.
All viscous (i.e. diffusive) fluxes are computed using a cen-
tral discretization, where the first derivatives are averaged
to the cell faces. The turbulent source terms are explicitly
added, assuming constant values within each volume.

The mean flow equations are integrated in time by an
explicit five-stage hybrid Runge–Kutta scheme, which is
accelerated by local time stepping, an implicit smoothing
of the residuals and a multigrid algorithm (Jameson
et al., 1981). According to a detailed analysis of Fassbender
(2004), the equations for turbulence quantities are inte-
grated by an implicit scheme on the finest grid level only,
where the source terms are linearized in time, which has
shown to be a highly efficient and robust approach.
3. Results and discussion

The performance of the turbulence models presented are
illustrated by computing three transonic flow cases: 2D
flow over the RAE2822 airfoil (Cook et al., 1979), 3-D flow
past the ONERA M6 wing (Schmitt and Charpin, 1979)
and the flow over the DLR-ALVAST wing-body configu-
ration representing a generic transport aircraft model,
Burgsmüller and Hoheisel (2000).

Selected results concerning the wall pressure distribution
and mean velocity and turbulence fields are displayed and
discussed in the following subsections.
3.1. RAE2822

The first example is the transonic flow around the
RAE2822 airfoil investigated experimentally by Cook
et al. (1979). A fairly strong shock is created near the
mid chord (x/c = 0.55). Two cases, denoted by Case 9
and 10, characterized by Ma1 = 0.73, Re1 = 6.5 · 106

and Ma1 = 0.75, Re1 = 6.2 · 106, respectively, were con-
sidered. Both airfoil configurations are at incidence angle
of a = 2.8�. Important difference between the two flows is
a thin, post-shock separation occurring in the case 10. 2D



Fig. 5. Blow-up of the C-type grid (736 · 176 cells) used for the
computation of the flow past RAE2822 airfoils (every second grid line is
shown).
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calculations were performed on a C-type grid, Fig. 5.
Although there is some doubt regarding the two-dimen-
sionality of the experiments (see e.g. Haase et al., 2006),
turbulence models that are capable to predict both cases
reasonably well usually perform also well for complex
industrial applications in the transonic flow regime. Three
grid resolutions were used in the framework of the grid
dependence study: coarse (consisting of 184 · 44 grid cells),
medium (368 · 88 grid cells) and fine (736 · 176 grid cells).
It was checked using the SSG/LRR-x model that the pres-
sure distributions at the finest and second finest grid level
are almost identical (see Fig. 6). Finally, the finest grid,
being regarded to be fine enough to ensure grid converged
solutions, was adopted for the computations.
Fig. 6. Effect of grid refinement on pressure distribution for RAE2822
airfoil (case 10) (the SSG/LRR-x model was used).
The solution domain is extended to 20 chord lengths in
all directions. At the solution domain boundaries the
far-field boundary conditions based on the theory of char-
acteristics were applied. Transition to turbulence in the
experiment was induced by tripping the flow near the lead-
ing edge at x/c = 0.03 on both upper and lower surfaces of
the airfoil. The computational treatment of this transition
location was accounted for by multiplying the entire source
term (production, redistribution and dissipation) in the
equations governing the Reynolds stresses and dissipation
rate by an appropriate step function, providing its zero
value in the laminar flow part and a unit value in the fully
turbulent flow region. Furthermore, it should be noted that
the corrections of the computational results obtained under
free-flight conditions with respect to the wind tunnel con-
finement (experimental conditions) were introduced
according to the proposal of Haase et al. (1993).

Fig. 7 shows the comparison of the computed pressure
coefficient distribution with available experimental data
for both flow configurations considered. Continuous flow
acceleration causes considerable pressure rise in the super-
sonic flow part which ends up in a shock appearance after
Fig. 7. Pressure coefficient distribution for RAE2822 airfoil: case 9
(upper) and case 10 (lower).



Fig. 8. Mean axial velocity profile evolution in the transonic flow over the upper RAE2822-profile surface for the cases 9 and 10.

Fig. 9. RMS of the normal components of the Reynolds-stress tensor at
two selected locations at the RAE2822/10-profile before and after the
shock.
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reaching an appropriate level. The overall agreement
between Reynolds-stress model results and experiment is
satisfactory for both configurations in contrast to the
results obtained by SA and k–x models. Whereas the SA
model application resulted in a premature shock in the case
9 and correct shock position in the case 10, the k–x model
results indicate a shock positioned too far downstream in
the case 10, while returning a correct shock location in
the case 9. A slight deviation with respect to the maximum
pressure level on the suction side immediately after the
leading edge of airfoil (Fig. 7 lower) in the case 10 was
obtained by both second-moment closures. The position
of the pressure peak coincides with the onset of the turbu-
lent region immediately after transition (x/c = 0.03). A
fairly crude transition treatment can certainly be the reason
for this departure, since the process of the Reynolds-stress
component generation pertinent to second-moment closure
models is especially sensitive to.

A slight discrepancy with respect to the premature shock
location obtained by the HJ model in the case 9 is notice-
able in the mean velocity field, Fig. 8. The velocity profile
at the location E corresponding to the shock position indi-
cates a somewhat stronger momentum loss. Interestingly,
these circumstances don’t influence the correct capturing
of the flow recovery in the post-shock region. The evolu-
tion of the mean velocity field indicates clearly the bound-
ary layer thickening starting at the shock foot, being
further enhanced by the adverse pressure gradient effects
corresponding to the destabilized wall curvature, i.e. to
the continuous cross-section expansion towards the trailing
edge of the airfoil. This predicted behaviour is in good
agreement with experiment. Both the pre-shock suction
pressure and the velocity profile immediately after the
shock wave (location F) were captured well in the case
10. However, important discrepancies concerning the
post-shock region with respect to the local, low-intensity
flow reversal situated around the location G were revealed.
It should be recalled here that the experimentally obtained
velocity field does not indicate the appearance of flow sep-
aration. In some previous computational studies, e.g. Bar-
dina et al. (1997), a slightly higher angle of attack (up to
3.1�) was imposed in order to accommodate the experimen-
tal conditions more appropriately. It should also be noted
that the present near-wall, Reynolds-stress model due to
Hanjalic and Jakirlic has never been tested before in the
flows influenced by compressibility. Furthermore, the
model version used here does not comprise the two addi-
tional terms in the dissipation equation which improve its
sensitivity against adverse pressure gradient effects with
respect to the intensified normal straining and excessive
length-scale increase (see e.g., the works of Jakirlić et al.,
2002 and Apsley and Leschziner, 1999). The analysis of
the model with respect to the compressibility effects is in
progress. The boundary-layer structure is strongly influ-
enced by the sudden pressure increase. Fig. 9 shows the
profiles of the normal Reynolds-stress components at two
streamwise locations corresponding to the positions D
and F, with the shock wave occurring in between. The
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effects of the increasingly varying adverse pressure gradient
in the region of shock are demonstrated through the inten-
sive turbulence production (all stress components experi-
enced strong increases) due to strongly enhanced
irrotational straining with respect to the rapid flow
deceleration.
3.2. ONERA M6 wing

Flow over the ONERA M6 semi-span wing (Schmitt
and Charpin, 1979) is calculated at Ma1 = 0.84, Re1 =
11.72 · 106 and a = 3.06� angle of incidence, Fig. 10.
The fully-turbulent calculations were performed at the
C–O-type grid comprising 240 · 64 · 52 cells, Fig. 11. This
grid was used as the standard structured grid for a cross
Fig. 10. ONERA M6 wing: wall pressure contours.

Fig. 11. Computational grid (240 · 64 · 52 cells) used for the computa-
tion of the flow past ONERA M6 wing.
comparison in the framework of the EU project FLOMA-
NIA (Haase et al., 2006). The grid is sufficiently fine to
resolve the immediate wall vicinity. The averaged y+ value
of the wall-nearest computational nodes over the entire
wing surface corresponds approximately to 1. The solution
domain was extended to 7.5 chord lengths in the x and y
directions and 9.5 chord lengths in the z direction. Similar
as in the previous case, the far-field boundary conditions
were applied at the solution domain boundaries. The sym-
metry boundary conditions were imposed at the x–y (z = 0)
plane, Fig. 11.

The wall pressure contours displayed in Fig. 10 as well
as the Mach-number contours (Fig. 12) and the pressure
coefficient distribution (Fig. 13) at selected spanwise loca-
tions illustrate the region of alternating favourable and
adverse pressure gradients causing local acceleration and
deceleration within the supersonic part of the flow. The
consequence of such flow behaviour is its double-shock-
like structure representing a double expansion into the
Fig. 12. Mach-number contours in the transonic flow around ONERA
M6 wing at 44% and 65% span.



Fig. 13. ONERA M6 wing: pressure coefficient distribution at selected spanwise location.
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supersonic regime. The flow experiences a rapid accelera-
tion in the leading edge region of the wing (x/c = 0.1–0.2)
up to Ma � 1.4, along with the steep rise of the pressure
level, Figs. 12 and 13. A prompt deceleration of the flow
down to Ma � 1.1 follows creating consequently a weak
shock, whose front propagates within the supersonic region
towards the second shock of considerably increased
strength. The second shock changes its position depending
on the span location. The gradual coalescence of the shocks
occurs in the final 15–20% of the wing span in the wing-tip
region, Fig. 13. The varying positions of both shocks with
respect to the spanwise location as well as the wall pressure
magnitude over the entire wing surface are reasonably well
captured by all models. The pressure coefficient distribu-
tion illustrates the equality of the wall pressure values at
both wing surfaces over the whole wing span correspond-
ing to the second half of the chord. The only exception is
the last spanwise position situated directly at the wing
tip, g = 0.99. Here, the influence of the tip vortex created
by the flow from the lower wing surface towards the upper
wing surface around the tip is clearly visible in the pressure
distribution. This feature is reasonably well captured by the
present Reynolds-stress transport models. All model pre-
dictions are of comparable quality, the only significant dif-
ference is documented at the location corresponding to
80% of the span. Here, the HJ model returned the dou-
ble-shock structure in correct agreement with experimental
results, whereas the other models applied predicted a pre-
mature coalescence of two shock fronts. While the position
and strength of the first shock at the spanwise positions
g = 0.44, 0.65 and 0.80 obtained by applying the HJ model
agree well with the experimental data, the predicted posi-
tion of the second shock exhibits a certain delay compared
to the measurements and other model results. The results
obtained by LRR/SSG and eddy-viscosity models (posi-
tions g = 0.44 and 0.65) display correct onset of the first



S. Jakirlić et al. / Int. J. Heat and Fluid Flow 28 (2007) 602–615 613
shock. However, the course of its front (milder slope),
whose foot is shifted downstream, indicates the pressure
relaxation of a somewhat lower intensity compared to a
steeper pressure gradient obtained by the HJ model. The
final outcome of such a situation reflects a gradual shorten-
ing of the region between two shocks (characterized by a
mild pressure increase) until their premature merging at
g = 0.80.

3.3. DLR-ALVAST

The DLR-ALVAST is a generic transport aircraft
model that can be equipped with turbine-driven engine
simulators (Kiock, 1996). It has been used, e.g. in the
EU-project ENIFAIR, for studying engine interference
effects (Burgsmüller and Hoheisel, 2000). In the present
work numerical simulations have been performed for the
clean wing configuration (Fig. 14) at a free stream Mach
number of Ma1 = 0.75 and a Reynolds number of
Re = 4.3 · 106 based on the mean chord length. The inci-
dence has been varied to achieve a lift coefficient of
CL = 0.5, which is the design point.

The computations with the SSG/LRR-x model have
been carried out on a grid consisting of 4.1 · 106 cells (this
grid was adopted from the study of Fassbender, 2004). Par-
ticular care has been taken in the grid generation process,
focussing especially on properly resolving the boundary-
layer over the entire aircraft surface (with 20–24 grid cells
accommodated in the normal-to-the-wall direction). The
near-wall grid lines have a wall distance well below
yþ1 ¼ 1 over the entire geometry, except a small portion
at the fuselage tail. The artificial dissipation coefficients
have been set to k(2) = 1/2 for first-order accuracy at
shocks and to k(4) = 1/32 for second-order in regions where
the solution is smooth (see Section 2.2). The relatively high
value of the latter coefficient has been necessary in order to
damp oscillations that are generated by a separation zone
at the wing-body junction. The settings of these coefficients
Fig. 14. DLR-ALVAST wing-body configuration: wall pressure contours.
influence mainly the strength of the shock (not the posi-
tion) with respect to the pressure difference at the shock
itself (immediately before and after the shock) in the
streamwise direction (the higher the values of the dissipa-
tion coefficients, the weaker, i.e. the more smeared out,
the shock), as it was investigated by Kroll and Jain
(1987). Nevertheless a rather low value of the Martinelli
coefficient (Martinelli and Jameson, 1988) of f = 0.3 could
have been used, avoiding excessive artificial dissipation in
highly stretched cells. The computations with the HJ model
experienced some stability problems, whose debugging is in
progress. On the other hand, the flow structure over the
DLR-ALVAST wing is characterized by a single shock
similar to the RAE2822 cases. Accordingly, it was not
expected that the HJ model results would have been sub-
stantially different compared to those obtained with the
LRR/SSG-x model. In the following only the latter results
will be presented.

Fig. 15 show the pressure distributions in two span-wise
wing sections obtained with the SSG/LRR-x Second-
Moment Closure in comparison with experimental data
from the EU-project ENIFAIR in the ONERA S1MA
Fig. 15. DLR-ALVAST generic aircraft: experimental and numerical
pressure distribution at 38% and 78% span.
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wind tunnel (Burgsmüller and Hoheisel, 2000). While the
overall agreement is fairly good, some deviations occur
with respect to the shock position. It is observed that in
the inboard part of the wing the shock is predicted
upstream of the measured position, while outboard it is
predicted downstream of the measured position towards
the wing tip. These deviations can to some extent also be
attributed to the fact that the aircraft model (made of plas-
tics) heated up, hence deformed during the experiments (see
e.g., the work of Hoheisel, 1999).
3.4. Numerical issues

The following statements can be made with respect to
the numerical robustness of the Reynolds-stress models.
The SSG/LRR-x model requires about 100% more CPU
time per iteration compared to the Wilcox k–x model.
Generally, the number of iterations needed depends on
the flow problem and is not necessarily higher when using
a Reynolds stress model. In the case of the ONERA M6
wing 1500 iterations have been used with the Wilcox k–x
model and 2500 with the SSG/LRR-x model. Hereby,
the first 700 iterations have been performed on coarse grids
(full multigrid). The iteration number for the HJ model is
somewhat higher, but only with respect to the generation
of the initial fields of the turbulent quantities in the imme-
diate wall vicinity. These circumstances relate to the initial
field (the HJ model computations started from the LRR/
SSG model results) adjustment to the HJ model equations.
4. Conclusions

The performance of a near-wall, Reynolds-stress turbu-
lence model accounting separately for the viscous effects
and the effects of Reynolds-stress and dissipation anisot-
ropy are investigated under the transonic flow conditions
characterized by the shock formation and strong shock/
boundary-layer interaction in several two-dimensional
and three-dimensional flow configurations. The overall
agreement with the available experimental data for the sur-
face pressure distribution with respect to the shock position
is satisfactory in all flow configurations computed. A dou-
ble-shock-like structure of the flow over the ONERA-M6
wing was captured, in good agreement with the experimen-
tal findings. Important departures are revealed concerning
the shock-induced separation at the RAE2822/10 airfoil.
Despite a correctly predicted shock position, the departure
from the experimentally obtained post-shock pressure level
caused the flow to remain attached. Further analysis of
these phenomena is necessary, especially with respect to
the specific model features that require consideration
concerning the compressibility effects and the conditions
of strong property variation. Computations were also
performed by using another near-wall, Reynolds-stress
transport closure with constant model coefficients (LRR/
SSG-x) as well as with two widely used eddy-viscosity-
based transport model schemes, one-equation mt-transport
model (Spalart and Allmaras, 1994) and the k–x due to
Wilcox (1988). With the exception of the premature shock
waves coalescence in the ONERA-M6 case, the LRR/SSG-
x model predictions follow reasonably the HJ model
results with respect to the pressure distribution in all con-
figurations considered, despite its inferiority in capturing
the near-wall Reynolds-stress anisotropy.
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